uv光氧处理设备UV光氧环保装置废气处理
行业:
环保纸业
地区:
北京
数量:
20000
规格:
定制
价格:
20000元/台
产品认证:
ISO
企业:
河北森然环保工程有限公司
更新:
2022-10-22
产品介绍
uv光氧处理设备原理
1.光解原理
物质在紫外线照射下吸收光线当中携带的能量成激发态,从而发生一系列光化学反应,最终变成无害的低分子化合物。
根据光化学**定律,首先,只有当激发态分子的能量足够使分子内的化学键断裂时,亦即光子的能量大于化学键能时,才能引起光离解反应。其次,为使分子产生有效的光化学反应,光还必须被所作用的分子吸收,即分子对某种特定波长的光要有特征吸收光谱,才能产生光化学反应。
因此并非所有的物质都能发生光离解反应,主要和光子能量大小与各物质自化学键断裂所需要的能量有关。(附光子能量公式:E=hv=hc/λ,h是普朗克常数、v是频率、c是光速、λ是波长。)
下面提供一份波长能量对照表,与常见污染物光解表。
由于紫外线波对人体有害,越短的紫外线波穿透力越强,对人身的危害也越大,在实际的生产与使用中用的最多的是波长254nm的紫外线U形灯管,其摩尔光子能量为470KJ/mol,由上表可以看出,在我们常见的voc气体中,能被光解的物质并不多,所以在选择UV光解设备的时候,一定要弄清楚自己的废气中主要成分是什么。
另外,物质被照射的时间越长,光解的效果越好,所以在消毒柜中利用紫外线灯消灭细菌有非常好的效果,然而在我们废气处理当中,由于气体始终是处于流动状态,所以效率受到气体在设备中的停留时间的影响。停留时间=设备长度/风速,风速=风量/气体流动方向设备横截面积。由此我们可以得出设备长度越长,横截面越大,停留时间越长,效果也越好。设备增大固然处理效果更好,但是设备成本也会随着设备尺寸的增大而增加,成本也是我们在设计设备时候需要重点考虑的问题,在行业经验中,我们一般把风速设置到0.7m/s,停留时间设置到3-5s,这样的性价比是**的,根据处理污染物的成分不同,处理效率可以达到15%-35%。
2.光催化原理
自1972年Honda-Fujishima效应即TiO2半导体电极的光催化分解水现象发现以来,半导体光催化领域得到了广泛的关注和飞速的发展,这一技术为我们提供了一种理想的能源利用和治理环境污染的方法。
光催化技术是通过催化剂利用光子能量,将许多需要在苛刻条件下发生的化学反应转化为在温和的环境下进行反应的先进技术。它作为一门新兴的学科,涉及半导体物理、光电化学、催化化学、材料科学、纳米技术等诸多领域,在能源、环境、健康等人类面临的重大问题方面均有应用前景,一直是前沿科学技术领域的研究热点之一。
其主要原理是:让紫外光或其他一定能量的光照射光敏半导体催化剂时(常用光敏半导体催化剂二氧化钛TiO2),当能量大于或等于半导体带隙能的光波(hν)辐射TiO2时,TiO2价带(VB)上的电子吸收光能(hν)后被激发到导带(CB)上,使导带上产生激发态电子(e-),而在价带(VB)上产生带正电荷的空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能使有机污染物氧化分解,如果保证足够的停留时间,理论上可以达到近乎完全的处理效果。
跳过中间复杂的物理化学反应,简单的说:紫外线照射二氧化钛会将将空气中的水和氧气,氧化还原成具有很强氧化性的超氧负离子和氢氧自由基,从而氧化污染物达到分解处理的作用。越多的超氧负离子与氢氧自由基,就有越强的分解有机废物的能力,不过就目前的光催化技术而言,还处于一个探索的阶段,还存在光量子产生量低,光能利用效率低等问题。虽然目前已经有了改性TiO2、新的非TiO2催化剂、加微波电场等方法,但是由于提升有限或是成本太高,并没有被广泛应用,现在市面上广泛使用的还是传统的TiO2作为催化剂。不过光催化有着非常广大的应用的前景,相信将来一定会有更加实用的技术产生。
回来我们的话题上来,由于技术限制以及成本的考虑,目前的UV光氧设备对有机污染物的分解效率普遍在30%-60%之间。不过近年来环保行业的热门,市场上涌现了大量的UV光氧设备厂家,生产出的UV设备,质量参差不齐,为了低价拿下订单,大量劣质产品充斥市场,在选用UV的时候一定要擦亮眼睛。达不到处理效果,白花钱都是小问题,由于UV经常用于易燃废气的处理,而灯管属于高发热元件,线路又是带电的,发生燃烧的事故并不鲜见,如果引发的恶性事故,那才真的是悔时晚矣。
1.光解原理
物质在紫外线照射下吸收光线当中携带的能量成激发态,从而发生一系列光化学反应,最终变成无害的低分子化合物。
根据光化学**定律,首先,只有当激发态分子的能量足够使分子内的化学键断裂时,亦即光子的能量大于化学键能时,才能引起光离解反应。其次,为使分子产生有效的光化学反应,光还必须被所作用的分子吸收,即分子对某种特定波长的光要有特征吸收光谱,才能产生光化学反应。
因此并非所有的物质都能发生光离解反应,主要和光子能量大小与各物质自化学键断裂所需要的能量有关。(附光子能量公式:E=hv=hc/λ,h是普朗克常数、v是频率、c是光速、λ是波长。)
下面提供一份波长能量对照表,与常见污染物光解表。
由于紫外线波对人体有害,越短的紫外线波穿透力越强,对人身的危害也越大,在实际的生产与使用中用的最多的是波长254nm的紫外线U形灯管,其摩尔光子能量为470KJ/mol,由上表可以看出,在我们常见的voc气体中,能被光解的物质并不多,所以在选择UV光解设备的时候,一定要弄清楚自己的废气中主要成分是什么。
另外,物质被照射的时间越长,光解的效果越好,所以在消毒柜中利用紫外线灯消灭细菌有非常好的效果,然而在我们废气处理当中,由于气体始终是处于流动状态,所以效率受到气体在设备中的停留时间的影响。停留时间=设备长度/风速,风速=风量/气体流动方向设备横截面积。由此我们可以得出设备长度越长,横截面越大,停留时间越长,效果也越好。设备增大固然处理效果更好,但是设备成本也会随着设备尺寸的增大而增加,成本也是我们在设计设备时候需要重点考虑的问题,在行业经验中,我们一般把风速设置到0.7m/s,停留时间设置到3-5s,这样的性价比是**的,根据处理污染物的成分不同,处理效率可以达到15%-35%。
2.光催化原理
自1972年Honda-Fujishima效应即TiO2半导体电极的光催化分解水现象发现以来,半导体光催化领域得到了广泛的关注和飞速的发展,这一技术为我们提供了一种理想的能源利用和治理环境污染的方法。
光催化技术是通过催化剂利用光子能量,将许多需要在苛刻条件下发生的化学反应转化为在温和的环境下进行反应的先进技术。它作为一门新兴的学科,涉及半导体物理、光电化学、催化化学、材料科学、纳米技术等诸多领域,在能源、环境、健康等人类面临的重大问题方面均有应用前景,一直是前沿科学技术领域的研究热点之一。
其主要原理是:让紫外光或其他一定能量的光照射光敏半导体催化剂时(常用光敏半导体催化剂二氧化钛TiO2),当能量大于或等于半导体带隙能的光波(hν)辐射TiO2时,TiO2价带(VB)上的电子吸收光能(hν)后被激发到导带(CB)上,使导带上产生激发态电子(e-),而在价带(VB)上产生带正电荷的空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能使有机污染物氧化分解,如果保证足够的停留时间,理论上可以达到近乎完全的处理效果。
跳过中间复杂的物理化学反应,简单的说:紫外线照射二氧化钛会将将空气中的水和氧气,氧化还原成具有很强氧化性的超氧负离子和氢氧自由基,从而氧化污染物达到分解处理的作用。越多的超氧负离子与氢氧自由基,就有越强的分解有机废物的能力,不过就目前的光催化技术而言,还处于一个探索的阶段,还存在光量子产生量低,光能利用效率低等问题。虽然目前已经有了改性TiO2、新的非TiO2催化剂、加微波电场等方法,但是由于提升有限或是成本太高,并没有被广泛应用,现在市面上广泛使用的还是传统的TiO2作为催化剂。不过光催化有着非常广大的应用的前景,相信将来一定会有更加实用的技术产生。
回来我们的话题上来,由于技术限制以及成本的考虑,目前的UV光氧设备对有机污染物的分解效率普遍在30%-60%之间。不过近年来环保行业的热门,市场上涌现了大量的UV光氧设备厂家,生产出的UV设备,质量参差不齐,为了低价拿下订单,大量劣质产品充斥市场,在选用UV的时候一定要擦亮眼睛。达不到处理效果,白花钱都是小问题,由于UV经常用于易燃废气的处理,而灯管属于高发热元件,线路又是带电的,发生燃烧的事故并不鲜见,如果引发的恶性事故,那才真的是悔时晚矣。